Search results for "Difference equation"

showing 10 items of 21 documents

A note on homoclinic solutions of (p,q)-Laplacian difference equations

2019

We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.

Pure mathematicsAlgebra and Number TheoryDifference equationApplied MathematicsOperator (physics)010102 general mathematicshomoclinic solution01 natural sciences010101 applied mathematicsNonlinear system(pq)-Laplace operatorpositive solutionSettore MAT/05 - Analisi MatematicaBoundary value problemHomoclinic orbitPalais–Smale condition0101 mathematicsLaplace operatorAnalysisMathematicsJournal of Difference Equations and Applications
researchProduct

Improvement of matrix solutions of generalized nonlinear wave equation

2005

Four classes of nonlinear wave equations are joined in one generalized nonlinear wave equation. A theorem is proved that the whole series of matrix functions satisfy the generalized wave equation. A justification of rotational properties of matrix solutions is given and a mathematical model of the ring vortex around the acute edge is proposed using of matrix solutions.

Matrix difference equationMatrix (mathematics)Matrix differential equationGeneralized eigenvectorApplied MathematicsMatrix functionMathematical analysisComputational MechanicsSymmetric matrixSinusoidal plane-wave solutions of the electromagnetic wave equationMass matrixMathematicsZAMM
researchProduct

Construction of a fundamental set of solutions of an arbitrary homogeneous linear difference equation

2002

Abstract The detailed construction of a prefixed fundamental set of solutions of a linear homogeneous difference equation of any order with arbitrarily variable coefficients is reported. The usefulness of the resulting resolutive formula is illustrated by simple applications to the Hermite polynomials and to the Fibonacci sequence.

Matrix difference equationFibonacci numberHermite polynomialsDifferential equationMathematical analysisMathematicsofComputing_NUMERICALANALYSISCharacteristic equationStatistical and Nonlinear PhysicsDifference equation matrix calculations Fibonacci sequence.Homogeneous differential equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONLinear difference equationMathematical PhysicsVariable (mathematics)MathematicsReports on Mathematical Physics
researchProduct

Eventually periodic solutions of single neuron model

2020

In this paper, we consider a nonautonomous piecewise linear difference equation that describes a discrete version of a single neuron model with a periodic (period two and period three) internal decay rate. We investigated the periodic behavior of solutions relative to the periodic internal decay rate in our previous papers. Our goal is to prove that this model contains a large quantity of initial conditions that generate eventually periodic solutions. We will show that only periodic solutions and eventually periodic solutions exist in several cases.

Period (periodic table)Differential equationApplied Mathematics010102 general mathematicsMathematical analysisperiodic solutionlcsh:QA299.6-433difference equationBiological neuron modellcsh:Analysis01 natural sciencesneuron model010101 applied mathematicsPiecewise linear functioneventually periodic solution0101 mathematicsAnalysisMathematicsNonlinear Analysis: Modelling and Control
researchProduct

Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation

2004

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.

Matrix difference equationFTCS schemeNumerical AnalysisPartial differential equationApplied MathematicsMathematical analysisCompact finite differenceNumerical solution of the convection–diffusion equationFinite difference coefficientCentral differencing schemeComputational MathematicsModeling and SimulationAnalysisCompact convergenceMathematicsESAIM: Mathematical Modelling and Numerical Analysis
researchProduct

One- and multi-locus multi-allele selection models in a random environment

1979

We deduce conditions for stochastic local stability of general perturbed linear stochastic difference equations widely applicable in population genetics. The findings are adapted to evaluate the stability properties of equilibria in classical one- and multi-locus multi-allele selection models influenced by random temporal variation in selection intensities. As an example of some conclusions and biological interpretations we analyse a special one-locus multi-allele model in more detail.

Mathematical optimizationApplied MathematicsModeling and SimulationStochastic difference equationsRandom environmentPopulation geneticsApplied mathematicsLocus (genetics)Stochastic optimizationAlleleQuantitative Biology::GenomicsAgricultural and Biological Sciences (miscellaneous)MathematicsJournal of Mathematical Biology
researchProduct

Coupled Discrete Fractional-Order Logistic Maps

2021

This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.

General Mathematicscaputo delta fractional differenceChaoticattraktoritstabilityStability (probability)fractional-order difference equationNumerical integrationNonlinear Sciences::Chaotic DynamicsAttractorQA1-939Computer Science (miscellaneous)Applied mathematicsOrder (group theory)dynaamiset systeemitEngineering (miscellaneous)Mathematicsdiscrete fractional-order systemhidden attractorMathematicsMathematics
researchProduct

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

�ber die Minimall�sung der Poincar�-Perronschen Differenzengleichung

1991

This paper deals with a special class of solutions of the higher order linear difference equation. It is shown that the minimal solution of Poincare-Perron type equations can be expressed in terms of generalized continued fractions.

Pure mathematicsGeneral MathematicsMathematical analysisOrder (group theory)Type (model theory)Special classLinear difference equationMathematicsMonatshefte f�r Mathematik
researchProduct

Exact treatment of operator difference equations with nonconstant and noncommutative coefficients

2013

We study a homogeneous linear second-order difference equation with nonconstant and noncommuting operator coefficients in a vector space. We build its exact resolutive formula consisting of the explicit noniterative expression of a generic term of the unknown sequence of vectors. Some nontrivial applications are reported in order to show the usefulness and the broad applicability of the result.

Cauchy problemSequenceDifferential equationGeneral MathematicsOperator (physics)Mathematical analysisGeneral EngineeringExpression (computer science)Term (logic)Noncommutative geometrySettore FIS/03 - Fisica Della MateriaCauchy problem Noncommuting operators Operator difference equationsMathematicsVector space
researchProduct